地球上的沙粒是否比宇宙中的星星更多?是否有足够的纸来写下一个古戈尔普勒克斯(googlolplex)的数字?
在古代,只有像阿基米德这样的少数学者才能领悟到非常大的数字与现实世界有关。但今天,我们普通人对数十亿和数万亿这样的数量都已经见怪不怪了。我们都以为数是无穷无尽的,只要一直数下去,就永远也数不到头,那么还可能存在所谓“最大的数”吗?
为了找出答案,本书展开了一场史诗般的探索,从我们身体内的细胞到宇宙中的恒星,再到所有黑洞蒸发所需的时间,大数无处不在。每当我们得到一个大数,另一个意想不到的更大的数就会出现,挑战我们的想象与计算极限。从阿基米德数、阿克曼函数到康威链式箭号表示法、高德纳向上箭号表示法,从庞加莱、图灵、希尔伯特到康托尔、哥德尔,从指数、数论到图论,这些伟大数学家思考和发现大数的故事帮助我们丈量世界,扩大自己的思考疆域。
欢迎加入寻找难以理解的巨大数字的奇妙之旅!
......(更多)
戴维·达林,曼彻斯特大学天文学博士。在过去的35年里,他一直是一名自由职业的科普作家,写过大约50本关于宇宙、物理、哲学和数学等学科的书。他的个人网站和社交媒体主页“发现数学”是公众广泛使用的在线资源。他目前正在制作一个以科学为主题的音乐节目,名为“科幻体验”。
阿格尼乔·班纳吉,出生于印度加尔各答,但大部分时间都在苏格兰度过。班纳吉的非凡数学天赋在他很小的时候就得到了认可。2018年,他在国际数学奥林匹克竞赛中获得满分,并列第一,这使他成为世界上杰出的年轻数学家之一。班纳吉目前正在剑桥大学三一学院继续自己的学业。
......(更多)
序 言
第1章 沙粒和星星
第2章 现实的极限
第3章 数学无界
第4章 向高处,向远处
第5章 一掠而过的g数
第6章 康威链
第7章 阿克曼和递归的力量
第8章 如果可以的话,算一算!
第9章 无穷之事
第 10 章 快速增长
第 11 章 不要计算!
第 12 章 大数数学家的奇异世界
第 13 章 超越之桥
第 14 章 最大的数
致 谢
附 录 人名对照表
延伸阅读
参考文献
译后记
......(更多)
在研究幂塔函数的过程中,欧拉成了超运算(超越简单的幂运算)的先驱。他是第一个深入研究我们现在所说的四次迭代的人。尽管他认识到,将一个幂提升到一个幂再提升到一个幂,这样一直提升下去,很快就会得出巨大的数,但他也发现了一些令人惊讶的结果。通往世界上最大的数的道路并不只有不断的上升,还有迷人的曲折。
出了那些单纯的大数之外,还有一些具备有趣特征的大数让人格外着迷。有时,我们讨论的大数是满足某些数学条件的最小的数。
......(更多)