好书推荐 好书速递 排行榜 读书文摘

线性代数(第5版)

线性代数(第5版)
作者:Gilbert Strang
出版社:清华大学出版社
出版年:2019-08
ISBN:9787302535560
行业:其它
浏览数:310

内容简介

线性代数内容包括行列式、矩阵、线性方程组与向量、矩阵的特征值与特征向量、二次型及Mathematica软件的应用等。每章都配有习题,书后给出了习题答案。本书在编写中力求重点突出、由浅入深、通俗易懂,努力体现教学的适用性。本书可作为高等院校工科专业的学生的教材,也可作为其他非数学类本科专业学生的教材或教学参考书。

......(更多)

作者简介

Gilbert Strang

MIT数学系教授。从UCLA博士毕业后一直在MIT任教。教授的课程有“数据分析的矩阵方法” “线性代数” “计算机科学与工程”等,出版的图书有Linear Algebra and Learning from Data、Introduction to Linear Algebra、Differential Equations and Linear Algebra。

......(更多)

目录

Table of Contents

1 Introduction to Vectors 1

1.1 VectorsandLinearCombinations...................... 2

1.2 LengthsandDotProducts.......................... 11

1.3 Matrices ................................... 22

2 Solving Linear Equations 31

2.1 VectorsandLinearEquations........................ 31

2.2 TheIdeaofElimination........................... 46

2.3 EliminationUsingMatrices......................... 58

2.4 RulesforMatrixOperations ........................ 70

2.5 InverseMatrices............................... 83

2.6 Elimination = Factorization: A = LU .................. 97

2.7 TransposesandPermutations ........................ 108

3 Vector Spaces and Subspaces 122

3.1 SpacesofVectors .............................. 122

3.2 The Nullspace of A: Solving Ax = 0and Rx =0 ........... 134

3.3 The Complete Solution to Ax = b ..................... 149

3.4 Independence,BasisandDimension .................... 163

3.5 DimensionsoftheFourSubspaces ..................... 180

4 Orthogonality 193

4.1 OrthogonalityoftheFourSubspaces . . . . . . . . . . . . . . . . . . . . 193

4.2 Projections ................................. 205

4.3 LeastSquaresApproximations ....................... 218

4.4 OrthonormalBasesandGram-Schmidt. . . . . . . . . . . . . . . . . . . 232

5 Determinants 246

5.1 ThePropertiesofDeterminants....................... 246

5.2 PermutationsandCofactors......................... 257

5.3 Cramer’sRule,Inverses,andVolumes . . . . . . . . . . . . . . . . . . . 272

vii

6 Eigenvalues and Eigenvectors 287

6.1 IntroductiontoEigenvalues......................... 287

6.2 DiagonalizingaMatrix ........................... 303

6.3 SystemsofDifferentialEquations ..................... 318

6.4 SymmetricMatrices............................. 337

6.5 PositiveDe.niteMatrices.......................... 349

7 TheSingularValueDecomposition (SVD) 363

7.1 ImageProcessingbyLinearAlgebra .................... 363

7.2 BasesandMatricesintheSVD ....................... 370

7.3 Principal Component Analysis (PCA by the SVD) . . . . . . . . . . . . . 381

7.4 TheGeometryoftheSVD ......................... 391

8 LinearTransformations 400

8.1 TheIdeaofaLinearTransformation .................... 400

8.2 TheMatrixofaLinearTransformation. . . . . . . . . . . . . . . . . . . 410

8.3 TheSearchforaGoodBasis ........................ 420

9 ComplexVectorsand Matrices 429

9.1 ComplexNumbers ............................. 430

9.2 HermitianandUnitaryMatrices ...................... 437

9.3 TheFastFourierTransform......................... 444

10 Applications 451

10.1GraphsandNetworks ............................ 451

10.2MatricesinEngineering........................... 461

10.3 Markov Matrices, Population, and Economics . . . . . . . . . . . . . . . 473

10.4LinearProgramming ............................ 482

10.5 Fourier Series: Linear Algebra for Functions . . . . . . . . . . . . . . . . 489

10.6ComputerGraphics ............................. 495

10.7LinearAlgebraforCryptography...................... 501

11 NumericalLinear Algebra 507

11.1GaussianEliminationinPractice ...................... 507

11.2NormsandConditionNumbers....................... 517

11.3 IterativeMethodsandPreconditioners . . . . . . . . . . . . . . . . . . . 523

12LinearAlgebrain Probability& Statistics 534

12.1Mean,Variance,andProbability ...................... 534

12.2 Covariance Matrices and Joint Probabilities . . . . . . . . . . . . . . . . 545

12.3 Multivariate Gaussian and Weighted Least Squares . . . . . . . . . . . . 554

MatrixFactorizations 562

Index 564

SixGreatTheorems/LinearAlgebrain aNutshell 573

......(更多)

读书文摘

we needed to open linear algebra to the world

......(更多)

猜你喜欢

点击查看